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ABSTRACT 

Population viability analysis (PVA) is a widely used tool in conservation biology to predict 

population size or assess extinction risk. The reliability and usefulness of PVA has been debated. 

In particular, PVA predictions may be suspect when uncertainty about parameters used in a the 

PVA is ignored. I used a simulation study to evaluated bias in predictions of final population 

sizes and prediction interval coverage of true final population sizes when parameter uncertainty 

was or was not included in a 50-year prospective PVA. Coverage was nearly nominal when 

uncertainty was propagated through the PVA, but was far less than nominal when uncertainty 

was ignored. Point estimates of final population size were negatively biased when true values 

were large, but bias was less evident when point estimates were compared to expected theoretical 

final population sizes generated from a true PVA using known true parameter values. Deviations 

of point estimates from expected theoretical values were large when expected values were large. 

Point estimates of final population sizes are misleading representations of PVA predictions, and 

decision-making process relying on PVA results should account for the entire distribution of 

possible outcomes. 
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INTRODUCTION 

Population viability analysis (PVA) is widely used in conservation biology to predict 

extinction risk or future population size, evaluate potential population implications of alternative 

management options, inform conservation policy of rare species, or establish recovery criteria for 

endangered species (Lindenmayer et al. 1993; Morris et al. 2002; Schultz & Hammond 2003; 

e.g., Schtickzelle et al. 2005; Peery & Henry 2010). Several recent studies seem to validate 

short-term predictions of population trajectories (Brook et al. 2000; Holmes & Fagan 2002), but 

others, citing concerns about precision, data quality, and the effects of estimation error, have 

questioned the usefulness of absolute PVA predictions (Mangel & Tier 1994; Taylor 1995; 

Ludwig 1996; 1999; Fieberg & Ellner 2000; Coulson et al. 2001; Ellner et al. 2002). Some 

authors have suggested that relative predictions (e.g., comparative implications of various 

management options) are more useful than absolute predictions (Hamilton & Moller 1995; 

Coulson et al. 2001; Reed et al. 2002; McCarthy, Andelman, & Possingham 2003). 

PVA uses stochastic computer simulation of population trajectories to generate a distribution 

of final population sizes at some specified time horizon (Boyce 1992; Akçakaya & Sjögren-

Gulve 2000). The proportion of trajectories that declines through some defined population 

threshold (i.e., the threshold where a shift to small-population dynamics fundamentally different 

from large-population dynamics might occur) constitutes the probability of “quasi-extinction” for 

the specific population under investigation. The stochastic projection model is parameterized 

with information about population vital rates, mechanisms of population dynamics, and/or 

population genetic information.  

 In conservation biology, the probability of quasi-extinction or predicted population size at 

some long time horizons (50-100 years) often is of interest. However, studies that claim to 
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validate PVA predictive accuracy have used time horizons of only 7-20 years (Brook et al. 2000; 

Holmes & Fagan 2002). PVA predictions at such long time horizons should be considerably 

more uncertain because stochastic error is compounded, the effect of rare catastrophes not 

encountered in the parameterization of the PVA adds additional uncertainty, and the environment 

in which the population live may change in unpredictable ways. 

A PVA should incorporate all sources of uncertainty and propagate them throughout the 

simulation (Goodman 2002). Types of possible uncertainty include environmental stochasticity, 

demographic stochasticity, model uncertainty, and parameter uncertainty owing to observation 

error and sampling variation. Environmental and demographic stochasticity typically are 

incorporated into prospective PVAs by sampling parameters from appropriate distributions with 

specified means and variances that are usually are treated as known. However, the means and 

variances of these distributions often are derived from retrospective analyses of population count 

data or encounter histories of marked individuals which consequently have associated 

uncertainty. This uncertainty can have a major influence on the reliability or usefulness of PVA 

predictions (Taylor 1995; McLoughlin & Messier 2004). Uncertainty about the population 

dynamics model also seldom is incorporated into PVA (but see Patterson & Murray 2008).  

The goal of this study was to evaluate PVA predictions when parameter uncertainty was or 

was not propagated through the PVA, but assuming no change in environmental variation. Using 

a modified diffusion model and a biologically reasonable distribution of intrinsic finite rates of 

population increase (lambda), but without density-dependence or demographic stochasticity, I 

generated 100 known population time series of 75 years. Time series of population sizes over the 

first 25 years, assuming no observation error, were used for Bayesian retrospective analyses to 

estimate lambdas for subsequent prospective PVAs. Based on the retrospective analysis I then 
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projected forward 50 years, either incorporating or not incorporating the uncertainty of the 

lambda estimates, and compared the predictions of the PVAs to 1) the known outcomes for each 

time series, and 2) PVA predictions from a true PVA, i.e., one parameterized with the true values 

for lambda and its variation. The first comparison is common in assessments of PVA accuracy 

(e.g., Brook et al. 2000; Holmes & Fagan 2002) but does not account for the fact that the true 

time series is itself a stochastic outcome from a distribution of possible outcomes and may in fact 

be an extreme outcome. Thus, using a single true value or a small sample of true values to 

evaluate PVA predictive accuracy may itself constitute a biased test. Therefore I also compared 

PVA predictions to results from a true PVA (Ellner et al. 2002) which does properly account for 

all possible time series arising from the true parameter values and thus does represent the true 

expectation for those parameter values. Obviously, such a comparison is possible only in 

simulation studies where the true parameter values are known. 

METHODS 

Simulating population trajectories 

I created an ensemble of populations, each with an initial population size of 150 and a true λ  

and λσ drawn from a lognormal distribution with a biologically reasonable mean (i.e., mean of 

means) and standard deviation (Table 1) based roughly on estimates reported for red deer (Brook 

et al. 2000).  Populations did not have any age-structure, density dependence, demographic 

stochasticity, or genetic influences (e.g., inbreeding depression at small population size) on tλ . 

For each simulated time series, I randomly selected one population (with it’s associated  λ  

and λσ ) and projected it forward for 75 time steps, where for each time step environmental 
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variation in tλ was represented by random draws from a lognormal distribution represented by 

that population’s λ  and λσ . 

Retrospective analysis and prospective PVA 

I used observations of the first 25 years of each time series to conduct a Bayesian 

retrospective analysis to estimate λ and λσ for that time series. Perfect observations and 

knowledge of the correct projection model were assumed, and conventional vague priors on the 

log-space parameter distributions (i.e., uniform forλ , and p( 2
λσ ) proportional to the reciprocal of 

2
λσ ) were assumed. The prospective PVA was parameterized as follows. The initial population 

size, n0, was specified as the population count in the final (25th) year of the retrospective 

analysis. Parameter uncertainty was incorporating by sampling the Bayesian posterior 

distribution of λ and λσ to obtain a different λ and λσ for each iterated trajectory in the 

prospective PVA. Each realization of λ and λσ  was retained for the entire trajectory, and in 

each time step, a tλ was randomly chosen from the distribution specified by thatλ and λσ . Thus, 

λ and λσ represented a constant distribution of environmental stochasticity applied to each time 

step but were different for each trajectory because of uncertainty about their true value. For the 

PVA that did not incorporates parameter uncertainty, the posterior modes of λ and λσ were 

taken to represent the “best” estimates for λ and λσ . These values of λ and λσ  thus specified a 

constant distribution for environmental stochasticity at each time step and were identical for all 

trajectories. Density dependence was not included in the PVA except for a hard population 

ceiling of 100,000. The number of trajectories simulated for each PVA was 3 million. The time 

horizon was 50 years. 
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Evaluating PVA performance 

The output of each PVA was a histogram of final population sizes with 500 bins. I evaluated 

both types of PVA by quantifying prediction interval coverage and absolute bias in predicted 

population sizes at the time horizon as compared to 1) true final population size and 2) 

population sizes predicted by the true PVA. I also compared extinction probabilities predicted by 

both PVA types with those predicted by the true PVA. 

To evaluate coverage, I calculated the proportion of prediction intervals from all the PVAs 

that included the actual population size at the end of the time series. For each histogram I 

interpolated tail probabilities to find the 2.5th, 5th, 12.5th, 25th, 37.5th, 62.5th, 75th, 87.5th, 

95th, and 97.5th percentiles. Pairing the percentiles provided 95%, 90%, 75%, 50%, and 25% 

prediction intervals with equal tail probabilities.  

Final predicted population sizes were compared with true final population size in two ways.  

I compared the proportion of predicted populations that were less than or equal to x times the 

true starting population at the beginning of the PVA projection to the proportion of true final 

population sizes that were less than or equal to the same population threshold (sensu Brook et al. 

2000; Holmes & Fagan 2002). In essence, this is a test applied to the ensemble that evaluates 

directional bias but is not informative about precision or magnitude of bias (Ellner et al. 2002). I 

also evaluated precision and the magnitude of deviations by subtracting the true final population 

size from the predicted final population size. The distribution of final population sizes was 

expected to be approximately lognormal, and sometimes highly asymmetric. Therefore I 

evaluated deviations of three possible point estimate – posterior mode, mean, and median – to 

represent predicted final population size.  
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The true final population size represents only a single outcome, possibly extreme, of many 

possible stochastic outcomes give the true parameter values, and this does not necessarily 

represent the expected true final population size. Therefore I also compared the distribution of 

final population sizes to a distribution from a true PVA which was parameterized with the known 

values of λ and λσ  used to generate the time series for each population. This distribution does 

represent the true expectation given the true parameter values. I compared the overall probability 

of extinction, and population sizes at the 2.5th, 5th, 12.5th, 25th, 37.5th, 50th, 62.5th, 75th, 

87.5th, 95th, and 97.5th percentiles, and at the posterior mean and mode. 

RESULTS 

The mean final population size of the true trajectories was 311, two populations declined to 

0, three other populations declines to <20, and four populations increased to >1000. Most 

populations had a final population size of <500 (Fig. 1). 

Coverage  

Coverage of true final population size by prediction intervals estimated from the PVA was 

near nominal to slightly greater than nominal when parameter uncertainty was incorporated into 

the PVA. Coverage also was close to nominal for the true PVA. Conversely, coverage was far 

below nominal when parameter uncertainty was ignored (Table 2).  

Comparisons to true final population size 

The proportion of final predicted population sizes that were less than or equal to x times the 

true initial size seemed to fairly closely track the proportion of final true population sizes that 

were less than or equal to the same threshold, especially when parameter uncertainty was ignored 

(Fig 2). However, many of the posterior distributions were highly asymmetric (had long upper 

tails), and it is clear that for all levels of x the mode was usually lower than the true population. 
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In contrast, posterior means and medians were more often greater than the specified threshold 

when x was small, especially for PVAs that included parameter uncertainty (posterior 

distributions more asymmetric than when uncertainty was ignored), but when x was large, the 

proportion of posterior means and medians that was less than or equal to the threshold was 

always greater than the comparable proportion of true populations (Fig 3).  

As expected, the deviations between predicted population sizes for both types of PVA and 

true final population increased in magnitude with increasing true final population size (Fig. 3). 

Additionally, there appears to be a large, negative bias in PVA predictions when true final 

population sizes were very large (>1000). Posterior distributions were more asymmetric when 

parameter uncertainty was includes; consequently, posterior modes tended to be lower, and 

means greater, than in the case where uncertainty was ignored (Fig 3). Posterior medians were 

similar for both types of PVA. Overall, posterior modes and medians were negatively biased, 

most notably the mode, and most severely when the posterior distribution included parameter 

uncertainty, whereas the posterior mean had a slight positive bias (Table 3).  

Comparisons to true PVA 

When evaluated as the differences in predictions from the test PVA and predictions from the 

true PVA, deviations also increased dramatically with increasing population size, but deviations 

were generally smaller than deviations from the observed final population sizes, and there was 

no distinct negative bias at very large population sizes (Fig. 4). Although both types of PVA 

sometimes resulted in either positive or negative deviations, PVAs that included parameter 

uncertainty clearly predicted smaller population sizes when evaluated at lower percentiles and at 

the posterior mode than did PVAs that ignored parameter uncertainty (Fig. 4, Table 4). The 

deviations of both types of PVA were very similar at the 50th percentile (median), and at larger 
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percentiles, predictions were larger when uncertainty was included than when it was ignored. 

Posterior means also were greater when parameter uncertainty was included than when it was 

ignored (Fig. 4). For both types of PVA, there was also a tendency to overestimate extinction 

probability (Fig. 4). 

DISCUSSION 

Prediction intervals from PVAs that ignored parameter uncertainty clearly were too narrow. 

An implication is that probability of extinction should be underestimated. I was not able to 

evaluate this prediction because so few actual populations went extinct. In fact, based on a 

comparison with a true PVA, incorporating parameter uncertainty or using “best estimates” both 

resulted in overestimating extinction probability. However, the true extinction probability was 

very low, so any uncertainty about λ or use of any “best estimate” lower than the true λ would 

result in a greater occurrence of predicted than observed extinctions, i.e., extinction probability 

could scarcely be underestimated.  

Real population trajectories are only one realization of a theoretical distribution defined by 

the true (but unknown) parameters for that population, and the distribution’s parameters are 

unknown. In this study, the negative bias when final population sizes were large, resulted from 

the fact that the theoretical distribution of final population sizes was asymmetric, and particularly 

large observed final population sizes came from the long upper tail. This can be seen by the fact 

that the mode, mean, and median from the true PVA (which represent the true theoretical values) 

also were negatively biased relative to the observed final value (Fig. 3). The observed population 

size could be from an entirely different region of the theoretical distribution than the region of 

the predicted posterior that contains the PVA point estimate under consideration. Therefore, it 

does not seem possible that accuracy of PVA, in general, can be assessed with real population 
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time series, beyond the simple proportional tests used by Brook et al. (2000 , see Fig. 1) and 

Holmes and Fagan (2002 , see Fig. 3).  These tests evaluate the performance of a PVA over an 

ensemble of populations, and although it may be encouraging that there appears to be 

concordance between the predicted and observed proportion of the ensemble that reaches a 

particular threshold, it is somewhat misleading to interpret such concordance as evidence for 

accuracy of PVA in general (Ellner et al. 2002). Such an assessment can be made only when true 

population parameters are know, i.e., in a simulation study.  

Systematic bias at large final population sizes did not exist when evaluated as the predicted 

population sizes compared to the theoretical sizes (from the true PVA) because comparisons 

were being made from like regions of the distributions. This allowed case by case evaluation of 

the magnitude of deviations from the theoretical values. As expected, large values of λ resulted 

in large final population sizes, and it is not surprising that prediction intervals were large and 

deviations of predictions from true values were large. Large prediction intervals emphasize the 

point that for any given PVA, point estimates of final population sizes at a distant time horizon 

(50 years in this case) can be very wrong.  

Interestingly, deviations for PVAs that included parameter uncertainty switched from 

negative to positive for increasing predicted posterior percentiles (Table 4). This indicates that 

uncertainty about the parameter values shifted greater weight in the posterior tails relative to a 

true posterior, which may reflect a “flattening” effect of a uniform prior on the posterior 

distribution of λ . Using a true empirical prior may shift more probability density out of the tails. 

Deviations for both PVA types are most similar at the posterior modes, which is not surprising, 

given that the posterior modes from the retrospective analysis, ignoring the rest of the 

distribution, were used to parameterize the prospective PVA. 
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Median deviations of the predicted posterior point estimates from the true posterior point 

statistics were less variable when parameter uncertainty was ignored than when uncertainty was 

incorporated into the PVA (Table 4). Although this might seem to suggest that ignoring 

uncertainty results in more reliable predictions than does accounting for uncertainty, two 

important points should be considered. First, it seems clear that none of the possible point 

estimates (mode, mean, median) adequately predict final population size – usually all of them 

were wrong, especially when final population sizes were large. Therefore, the metric of interest 

in a PVA result should be the entire posterior distribution, which theoretically represents all the 

possibilities. For any given population, it is highly misleading to present a point estimate and say 

it is “the” predicted final population size. Second, when parameter uncertainty was ignored, 

confidence intervals calculated from the posterior distribution of final populations sized excluded 

the true population size too frequently. Thus, even though median (and mean) absolute 

deviations were smaller than when parameter uncertainty was included, the posterior distribution 

often failed to include the correct fraction of trajectory outcomes, sometimes by a wide margin.  

In summary, I draw four main conclusions from my analyses. First, PVAs that use “best” 

estimates for forward projection produce confidence intervals that are too narrow, whereas 

confidence intervals are correct when parameter uncertainty is appropriately incorporated into 

the PVA. Second, accuracy of PVA predictions is best assessed when population trajectories are 

simulated and true parameter values are known. Real population trajectories conceivably could 

come from improbable parts of the theoretical distribution and thus assessments of bias based on 

such theoretically improbable trajectories could be greatly distorted. Third, regardless of whether 

“best” estimates are used to parameterize a PVA or parameter uncertainty is properly accounted, 

predictive intervals at long time horizons are broad, especially for growing populations, or where 
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there is considerable environmental variation in the populations’ growth rates. Fourth, use of 

point estimates to describe final population sizes predicted by a PVA ignore all uncertainty and 

thus are highly misleading. Any decision-making process using results of a PVA should account 

for the entire distribution of possible outcomes. 
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Table1. Ensemble parameters defining lognormal     
distributions of parameters that in turn define lognormal 
distributions specifying means and environmental variation 
for each of the populations in the ensemble.  

Parameter mean std dev 

λ 1.005 0.01 

λσ  0.05 0.05 
 
 
 

Table 2. Percent of true final population sizes (n=100) that were included in the predicted 
confidence intervals from PVAs that did or did not include uncertainty about the mean and 
standard deviation of lambda, and for a PVA that included true values used to simulate population 
trajectories. 

 Actual coverage (%) 

Interval (%) Parameter uncertainty “Best” estimates True parameters 

95 96 77 93 

90 92 70 89 

75 77 49 80 

50 51 34 55 

25 30 14 22 
 
 
 
 
 

Table 3. Mean, sd, and median of deviations in predicted final population sizes (n=100) relative to 
true final population sizes, where predicted size was represent by either the mode, mean or median 
of the posterior distribution of final population size from two types of PVA: one that did, and on 
that did not include uncertainty about λ  and λσ . Time horizon for the projection was 50 years. 

 Parameter uncertainty “Best” estimates 

 

Posterior statistic 

Mean (sd) of 
deviations 

Median of 
deviations 

Mean (sd) of 
deviations 

Median of 
deviations 

Mode -89.2 (269.6) -32.5 -50.4 (248.8) -14.5 

Mean 38.3 (260.2) 11.0 -14.4 (240.6) 3.0 

Median -32.0 (241.4) -7.0 -29.0 (241.9) -3.0 
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Table 4. Mean and sd of bias of probability of extinction, and final population sizes (n=100) 
predicted from two types of PVA: one that did, and on that did not include uncertainty about λ  
and λσ , when compared to probability of extinction and population sizes predicted from a true 
PVA (parameterized with true values used to simulate the population trajectories that 
parameterized the test PVAs). Time horizon for the projection was 50 years. 

 Parameter uncertainty “Best” estimates 

 

Posterior statistic 

Mean (sd) of 
deviations 

Median of 
deviations 

Mean (sd) of 
deviations 

Median of 
deviations 

p(extinction) 0.0097 (0.054) 0.0  0.0075 (0.050) 0.0 

N(t), 2.5th percentile -45.6 (62.2) -34.0 9.4 (76.3) -2.5 

N(t), 5th percentile -41.6 (66.0) -31.5 9.8 (81.6) -3.0 

N(t), 12.5th percentile -32.9 (73.9) -27.0 10.5 (91.8) -5.0 

N(t), 25th percentile -21.0 (87.9) -24.0 10.7 (104.6) -6.5 

N(t), 37.5th percentile -8.5 (105.6) -15.0 10.3 (117.0) -7.5 

Median (N(t)) 6.6 (129.4) -13.5 9.6 (130.0) -9.0 

N(t), 62.7th percentile 27.4 (164.2) -1.5 8.4 (145.5) -9.0 

N(t), 75th percentile 59.5 (223.4) 5.5 5.9 (166.5) -11.0 

N(t), 87.5th percentile 129.0 (355.6) 27.5 0.2 (202.3) -15.0 

N(t), 95th percentile 236.6 (610.0) 75.0 -12.5 (254.0) -16.5 

N(t), 97.5th percentile 421.2 (895.9) 110.0 -27.7 (302.2) -25.5 

Mean (N(t)) 57.2 (193.2) 5.5 4.5 (141.2) -9.0 

Mode (N(t)) -26.2 (102.0) -16.5 12.6 (115.2) -5.0 
 
 
 
 



Stauffer • Evaluating PVA predictions 16

 
 
 
 
 
 

 

Figure 1. Distribution of true final population 
sizes for 100 simulated population trajectories. 

Figure 2. Proportion of predicted and true final population sizes that were less than or equal to x 
times the true population size at the beginning of the PVA projection when predicted population 
size is represented by either the mode, mean, or median of the PVA posterior distribution of final 
population sizes. Two types of PVA are represented: one that incorporates uncertainty about the 
true value of λ  and λσ  (by sampling the retrospective posteriors for each parameter in PVA 
iteration), and one that ignores parameter uncertainty an instead considers the retrospective 
posterior modes as the “best” parameter estimates. Note that proportions greater than the solid 
line indicated that final population sizes were less than or equal to the threshold more often than 
expected, and thus imply negative bias in predicted final population sizes. 
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Figure 3. Bias in predicted final population sizes represented by either the mode, mean, or 
median of the PVA posterior distribution of final population sizes. Two types of PVA are 
represented: one that incorporates uncertainty about the true value of λ  and λσ  (by sampling the 
retrospective posteriors for each parameter in PVA iteration), and one that ignores parameter 
uncertainty an instead considers the retrospective posterior modes as the “best” parameter 
estimates.  
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Figure 4. Bias of probability of extinction and final population sizes (n=100) predicted 
from two types of PVA: one that did, and on that did not include uncertainty about λ  
and λσ , when compared to probability of extinction and population sizes predicted from 
a true PVA (parameterized with true values used to simulate the population trajectories 
that parameterized the test PVAs). 


